Affiliation:
1. State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Abstract
The transketolase 1 gene (TKTL1) is an essential factor that contributes to brain development. Some studies have shown the influence of TKTL1 in cancers, but it has been rarely reported in kidney cancer. Furthermore, the role of TKTL1 in the prognosis and tumor infiltration of immune cells in various cancers, particularly kidney cancer, remains unknown. In this study, TKTL1 expression and its clinical characteristics were investigated using a variety of databases. TIMER was used to investigate the relationship between TKTL1 and immune infiltrates in various types of cancer. We also studied the relationship between TKTL1 expression and response to PD-1 blocker immunotherapy in renal cancer. We conducted TKTL1 agonists virtual screening from 13,633 natural compounds (L6020), implemented secondary library construction according to the types of top results, and then conducted secondary virtual screening for 367 alkaloids. Finally, in vitro assays of cell viability assays and colony formation assays were performed to demonstrate the pharmacological potency of the screening of TKTL1 agonists. Using these methods, we determined that TKTL1 significantly affects the prognostic potential in different types of kidney cancer patients. The underlying mechanism might be that the TKTL1 expression level was positively associated with devious immunocytes in kidney renal clear cell carcinoma (KIRC) rather than in kidney renal papillary cell carcinoma (KIRP) and kidney chromophobe (KICH). This recruitment may result from the up-regulation of the mTOR signaling pathway affecting T cell metabolism. We also found that TKTL1 may act as an immunomodulator in KIRC patients’ response to anti-PD-1 therapy. Moreover, we also found that piperine and glibenclamide are potent agonists of TKTL1. We have demonstrated, in vitro, that piperine and glibenclamide can inhibit the proliferation and clone formation of Caki-2 cell lines by agonizing the expression of TKTL1. In summary, our discovery implies that TKTL1 may be a promising prognostic biomarker for KIRC patients who respond to anti-PD-1 therapy. Piperine and glibenclamide may be effective therapeutic TKTL1 agonists, providing a theoretical basis for the clinical treatment of kidney cancer.
Funder
National Natural Science Foundation of China
Shanghai Jiao Tong University School of Medicine