Time-Pattern Profiling from Smart Meter Data to Detect Outliers in Energy Consumption

Author:

Hurst WilliamORCID,Montañez Casimiro A. CurbeloORCID,Shone Nathan

Abstract

Smart meters have become a core part of the Internet of Things, and its sensory network is increasing globally. For example, in the UK there are over 15 million smart meters operating across homes and businesses. One of the main advantages of the smart meter installation is the link to a reduction in carbon emissions. Research shows that, when provided with accurate and real-time energy usage readings, consumers are more likely to turn off unneeded appliances and change other behavioural patterns around the home (e.g., lighting, thermostat adjustments). In addition, the smart meter rollout results in a lessening in the number of vehicle callouts for the collection of consumption readings from analogue meters and a general promotion of renewable sources of energy supply. Capturing and mining the data from this fully maintained (and highly accurate) sensing network, provides a wealth of information for utility companies and data scientists to promote applications that can further support a reduction in energy usage. This research focuses on modelling trends in domestic energy consumption using density-based classifiers. The technique estimates the volume of outliers (e.g., high periods of anomalous energy consumption) within a social class grouping. To achieve this, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points to Identify the Clustering Structure (OPTICS) and Local Outlier Factor (LOF) demonstrate the detection of unusual energy consumption within naturally occurring groups with similar characteristics. Using DBSCAN and OPTICS, 53 and 208 outliers were detected respectively; with 218 using LOF, on a dataset comprised of 1,058,534 readings from 1026 homes.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3