Abstract
In recent years, lipid-based nanosystems have emerged as a promising class of nanocarriers for encapsulating many active agents. Solid lipid nanoparticles (SLNs) provide good stability (colloidal as well as physical) and high biocompatibility. Appropriate design of the carrier structure through a selection of components and preparation methods allows us to obtain formulations with desired physicochemical parameters and biological properties. The present contribution has been carried out to investigate SLNs containing biocompatible phosphatidylcholine mixed with non-ionic surfactant Tween 60 as stabilizing agents. The internal lipid phase consisted of glyceryl monostearate was confirmed as safe for drug delivery by the Food and Drug Administration. The SLNs were fabricated by ultrasonic-nanoemulsification method. The preparation process was optimized in regard to variable parameters such as ultrasonication time and used amplitude and number of cycles. The sizes of the studied nanoparticles along with the size distribution were determined by dynamic light scattering (DLS), while shape and morphology were determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The colloidal stability was measured by a turbidimetric method. The physical state of SLNs was characterized using differential scanning calorimetry (DSC). The obtained results indicate that the proposed SLNs may provide great potential for design and preparation of novel delivery nanosystems with a variety of possible applications.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献