Evaluation of the Performance of OTOPLAN-Based Cochlear Implant Electrode Array Selection: A Retrospective Study

Author:

Távora-Vieira Dayse123ORCID,Voola Marcus12,Kuthubutheen Jafri124,Friedland Peter24ORCID,Gibson Daren1,Acharya Aanand1

Affiliation:

1. Fiona Stanley Fremantle Hospitals Group, Perth, WA 6150, Australia

2. Medical School, Division of Surgery, The University of Western Australia, Perth, WA 6010, Australia

3. Faculty of Health Sciences, School of Allied Health, Curtin University, Perth, WA 6102, Australia

4. Sir Charles Gairdner Hospital, Perth, WA 6009, Australia

Abstract

Otoplan is a surgical planning software designed to assist with cochlear implant surgery. One of its outputs is a recommendation of electrode array type based on imaging parameters. In this retrospective study, we evaluated the differences in auditory outcomes between patients who were implanted with arrays corresponding to those recommended by the Otoplan software versus those in which the array selection differed from the Otoplan recommendation. Pre-operative CT images from 114 patients were imported into the software, and array recommendations were generated. These were compared to the arrays which had actually been implanted during surgery, both in terms of array type and length. As recommended, 47% of patients received the same array, 34% received a shorter array, and 18% received a longer array. For reasons relating to structure and hearing preservation, 83% received the more flexible arrays. Those who received stiffer arrays had cochlear malformations or ossification. A negative, although non-statistically significant correlation was observed between the CNC scores at 12 months and the absolute value of the difference between recommended array and implanted array. In conclusion, clinicians may be slightly biased toward shorter electrode arrays due to their perceived greater ability to achieve full insertion. Using 3D imaging during the pre-operative planning may improve clinicians’ confidence to implant longer electrode arrays, where appropriate, to achieve optimum hearing outcomes.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3