Category Theory Framework for System Engineering and Safety Assessment Model Synchronization Methodologies

Author:

Vidalie JulienORCID,Batteux MichelORCID,Mhenni FaïdaORCID,Choley Jean-YvesORCID

Abstract

In recent decades, there has been a significant increase in systems’ complexity, leading to a rise in the need for more and more models. Models created with different intents are written using different formalisms and give diverse system representations. This work focuses on the system engineering domain and its models. It is crucial to assert a critical system’s compliance with its requirements. Thus, multiple models dedicated to these assertions are designed, such as safety or multi-physics models. As those models are independent of the architecture model, we need to provide means to assert and maintain consistency between them if we want the analyses to be relevant. The model synchronization methodologies give means to work on the consistency between the models through steps of abstraction to a common formalism, comparison, and concretization of the comparison results in the original models. This paper proposes a mathematical framework that allows for a formal definition of such a consistency relation and a mathematical description of the models. We use the context of category theory, as this is a mathematical theory providing great tools for taking into account different abstraction levels and composition of relations. Finally, we show how this mathematical framework can be applied to a specific synchronization methodology with a realistic study case.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

2. Conceptual interoperability through Models Federation;Guychard;Proceedings of the Semantic Information Federation Community Workshop,2013

3. Inconsistency handling in multiperspective specifications

4. Ingénierie Système et Sûreté de Fonctionnement: Méthodologie de Synchronisation des Modèles d’Architecture et d’Analyse de Risques;Legendre;Ph.D. Thesis,2017

5. Model Synchronization: A Formal Framework for the Management of Heterogeneous Models

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3