Optimal Machine Learning Based Privacy Preserving Blockchain Assisted Internet of Things with Smart Cities Environment

Author:

Al-Qarafi A.,Alrowais Fadwa,S. Alotaibi Saud,Nemri NadhemORCID,Al-Wesabi Fahd N.ORCID,Al Duhayyim Mesfer,Marzouk Radwa,Othman Mahmoud,Al-Shabi M.

Abstract

Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city. Certain other applications of smart cities were location-based services, transportation management, and urban design, amongst others. There are several challenges under these applications containing privacy, data security, mining, and visualization. The blockchain-assisted IoT application (BIoT) is offering new urban computing to secure smart cities. The blockchain is a secure and transparent data-sharing decentralized platform, so BIoT is suggested as the optimum solution to the aforementioned challenges. In this view, this study develops an Optimal Machine Learning-based Intrusion Detection System for Privacy Preserving BIoT with Smart Cities Environment, called OMLIDS-PBIoT technique. The presented OMLIDS-PBIoT technique exploits BC and ML techniques to accomplish security in the smart city environment. For attaining this, the presented OMLIDS-PBIoT technique employs data pre-processing in the initial stage to transform the data into a compatible format. Moreover, a golden eagle optimization (GEO)-based feature selection (FS) model is designed to derive useful feature subsets. In addition, a heap-based optimizer (HBO) with random vector functional link network (RVFL) model was utilized for intrusion classification. Additionally, blockchain technology is exploited for secure data transmission in the IoT-enabled smart city environment. The performance validation of the OMLIDS-PBIoT technique is carried out using benchmark datasets, and the outcomes are inspected under numerous factors. The experimental results demonstrate the superiority of the OMLIDS-PBIoT technique over recent approaches.

Funder

King Khalid University

Princess Nourah bint Abdulrahman University

Umm al-Qura University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Information security model of block chain based on intrusion sensing in the IoT environment

2. On the Design and Implementation of a Blockchain Enabled E-Voting Application Within IoT-Oriented Smart Cities

3. A comprehensive proposal for blockchain-oriented smart city;Mukherjee,2021

4. A blockchain future for internet of things security: a position paper

5. DeepBlockScheme: A deep learning-based blockchain driven scheme for secure smart city;Singh;Hum.-Cent. Comput. Inf. Sci,2021

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3