Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A Comparative Study

Author:

Gulzar YonisORCID,Khan Sumeer AhmadORCID

Abstract

Melanoma skin cancer is considered as one of the most common diseases in the world. Detecting such diseases at early stage is important to saving lives. During medical examinations, it is not an easy task to visually inspect such lesions, as there are similarities between lesions. Technological advances in the form of deep learning methods have been used for diagnosing skin lesions. Over the last decade, deep learning, especially CNN (convolutional neural networks), has been found one of the promising methods to achieve state-of-art results in a variety of medical imaging applications. However, ConvNets’ capabilities are considered limited due to the lack of understanding of long-range spatial relations in images. The recently proposed Vision Transformer (ViT) for image classification employs a purely self-attention-based model that learns long-range spatial relations to focus on the image’s relevant parts. To achieve better performance, existing transformer-based network architectures require large-scale datasets. However, because medical imaging datasets are small, applying pure transformers to medical image analysis is difficult. ViT emphasizes the low-resolution features, claiming that the successive downsampling results in a lack of detailed localization information, rendering it unsuitable for skin lesion image classification. To improve the recovery of detailed localization information, several ViT-based image segmentation methods have recently been combined with ConvNets in the natural image domain. This study provides a comprehensive comparative study of U-Net and attention-based methods for skin lesion image segmentation, which will assist in the diagnosis of skin lesions. The results show that the hybrid TransUNet, with an accuracy of 92.11% and dice coefficient of 89.84%, outperforms other benchmarking methods.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3