Classification and Regression of Muscle Neural Signals on Human Lower Extremities via BP_AdaBoost

Author:

Wang JunyaoORCID,Dai Yuehong,Si Xiaxi

Abstract

Electromyography (EMG) signals are widely applied in the classification of human motion and intention recognition as having the characteristic of earlier than actual limb motion. In this article, to improve its accuracy of classification and prediction, we firstly analyze the relationship between muscle length and joint movement and select rectus femoris and biceps femoris as the experimental muscles to collect neural signals by means of musculoskeletal analysis software. EMG sensors are used to measure those muscles’ EMG signals of five kinds of knee movements, including thigh-raising, calf-raising, squatting, knee bending on chair, and walking. We designed a BP_AdaBoost algorithm with the BP neural network as a weak classifier and weak regressor, and a muscle neural activation is used as the input for recognition. It is a negative correlation between the length of the rectus femoris and the biceps femoris during gait. Their muscle neural signals are used as the input of the recognition algorithm. The experiment results show that the proposed algorithm improves the rate of BP neural network from 78.82% to 93.52%. The thigh EMG signal successfully maps the knee joint angle by utilizing BP_AdaBoost; its error in identifying five kinds of motion modes is lowest compared with other regression algorithms.

Funder

Aerospace Research Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Human Motion Intent Recognition Based on Kernel Principal Component Analysis and Relevance Vector Machine;Liu;Robot,2017

2. Research Progress of Computer Vision and Pattern Recognition;Sun;Front. Data Comput.,2019

3. Development of a lower limb multi-joint assistance soft exosuit

4. Research on Neural Signal Acquisition and Stimulation System;Bai,2007

5. Measurement Methods of Sports Biomechanics;Lu,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3