Synthesis of Ni3Si4O10(OH)2 Porous Microspheres as Support of Pd Catalyst for Hydrogenation Reaction

Author:

Wang Tingting,Liu Chenyuan,Ma Xinxin,Zhu Wancheng,Lv Xiaoxia,Zhang HengORCID

Abstract

Nickel phyllosilicates have attracted much attention owing to their potential applications in various fields. Herein, Ni3Si4O10(OH)2 porous microspheres (NiSi-PMs) with a diameter of 1.2 to 3.2 μm were successfully fabricated via a urea-assisted hydrothermal method, and subsequently used to prepare supported Pd catalyst. Characterizations of the NiSi-PMs and the obtained catalyst, combined with the catalytic performance for the hydrogenation reaction, are presented and discussed. The BET surface area and pore volume of the NiSi-PMs were 196.2 m2 g−1 and 0.70 cm3 g−1, respectively. The Pd/NiSi-PMs catalyst exhibited remarkable catalytic activity for the hydrogenation of styrene under mild conditions, with a turnover frequency of 5234 h−1, and the catalyst was recovered and recycled for six consecutive cycles without any discernible loss of activity. H2-TPR and H2-TPD revealed that the activity of the catalysts was closely related to the adsorption property for hydrogen. The present Ni3Si4O10(OH)2 supported Pd catalyst afforded a promising and competitive candidate for heterogeneous catalysis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3