Study of Thixotropic Characteristics of a Kerosene Gel Propellant by Bayesian Optimization

Author:

Zhou HaoORCID,Chen Cai,Feng Feng,Zhou Changsheng,Zhang Wenling,Wu Wei-Tao

Abstract

The rheological behavior of gel propellants is crucial for their practical applications, especially in the rocket engine and ramjet fields. The thixotropic characteristics of gel propellants are an important component of their rheological properties and have a notable impact on their flow and injection process. However, most gel propellants contain rich, dynamic cross-linked network structures, which impart complex non-Newtonian fluid properties, and it is difficult to establish a unified mathematical model. In view of this, this study addresses the thixotropy of a prepared RP-3 kerosene gel and determines the mathematical model and model parameters describing its thixotropy. Experiments show that the kerosene gel exhibits shear-thinning properties as well as thixotropy. To describe the microstructural changes in the gel, three thixotropic constitutive models are introduced to analyze the rheological data, and the constitutive equation parameters are optimized. The three models are all structural dynamic models, which can be used to describe microstructural changes within the material. In addition, the fitting of the constitutive equation is a multiparameter optimization problem, and an appropriate optimization method must be used for parameter fitting. Therefore, the Bayesian optimization method combined with Gaussian process regression and the upper confidence bound (UCB) acquisition function is used in the multiparameter fitting of the constitutive models. Both experiments and numerical results show that the thixotropic model, which introduces a pre-factor with shear strain and assumes that the breakdown of the gel structure is related to energy dissipation rather than the shear rate, has a better fitting effect and prediction ability with regard to the gel. Combined with transient experiments at different shear rates, the model parameters of the constitutive law can be determined quickly by applying the Bayesian optimization method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3