GTP-Bound N-Ras Conformational States and Substates Are Modulated by Membrane and Point Mutation

Author:

Farcas Alexandra1,Janosi Lorant1ORCID

Affiliation:

1. Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania

Abstract

Oncogenic Ras proteins are known to present multiple conformational states, as reported by the great variety of crystallographic structures. The GTP-bound states are grouped into two main states: the “inactive” state 1 and the “active” state 2. Recent reports on H-Ras have shown that state 2 exhibits two substates, directly related to the orientation of Tyr32: toward the GTP-bound pocket and outwards. In this paper, we show that N-Ras exhibits another substate of state 2, related to a third orientation of Tyr32, toward Ala18 and parallel to the GTP-bound pocket. We also show that this substate is highly sampled in the G12V mutation of N-Ras and barely present in its wild-type form, and that the G12V mutation prohibits the sampling of the GTPase-activating protein (GAP) binding substate, rendering this mutation oncogenic. Furthermore, using molecular dynamics simulations, we explore the importance of the membrane on N-Ras’ conformational state dynamics and its strong influence on Ras protein stability. Moreover, the membrane has a significant influence on the conformational (sub)states sampling of Ras. This, in turn, is of crucial importance in the activation/deactivation cycle of Ras, due to the binding of guanine nucleotide exchange factor proteins (GEFs)/GTPase-activating proteins (GAPs).

Funder

Ministry of Research, Innovation and Digitalisation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference77 articles.

1. Ras Genes;Barbacid;Annu. Rev. Biochem.,1987

2. RAS oncogenes: The first 30 years;Malumbres;Nat. Rev. Cancer,2003

3. Ras nanoclusters: Molecular structure and assembly;Abankwa;Semin. Cell Dev. Biol.,2007

4. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction;Tian;Nat. Cell Biol.,2007

5. Ras proteins: Different signals from different locations;Hancock;Nat. Rev. Mol. Cell Biol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3