Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium

Author:

Cirovic Aleksandar1,Satarug Soisungwan2

Affiliation:

1. Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia

2. Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia

Abstract

Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.

Funder

Centre for Kidney Disease Research

Translational Research Institute

Faculty of Medicine, University of Belgrade, Serbia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3