Molecular Mechanisms and Therapeutic Implications of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells in an In Vitro Model of Diabetic Retinopathy

Author:

Agafonova Aleksandra1ORCID,Cosentino Alessia1,Romano Ivana Roberta1,Giurdanella Giovanni2,D’Angeli Floriana3ORCID,Giuffrida Rosario1ORCID,Lo Furno Debora1ORCID,Anfuso Carmelina Daniela1ORCID,Mannino Giuliana4ORCID,Lupo Gabriella1ORCID

Affiliation:

1. Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy

2. Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy

3. Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy

4. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy

Abstract

The blood–retinal barrier (BRB) is strongly compromised in diabetic retinopathy (DR) due to the detachment of pericytes (PCs) from retinal microvessels, resulting in increased permeability and impairment of the BRB. Western blots, immunofluorescence and ELISA were performed on adipose mesenchymal stem cells (ASCs) and pericyte-like (P)-ASCs by co-cultured human retinal endothelial cells (HRECs) under hyperglycemic conditions (HG), as a model of DR. Our results demonstrated that: (a) platelet-derived growth factor receptor (PDGFR) and its activated form were more highly expressed in monocultured P-ASCs than in ASCs, and this expression increased when co-cultured with HRECs under high glucose conditions (HG); (b) the transcription factor Nrf2 was more expressed in the cytoplasmic fraction of ASCs and in the P-ASC nuclear fraction, under normal glucose and, even more, under HG conditions; (c) cytosolic phospholipase A2 activity and prostaglandin E2 release, stimulated by HG, were significantly reduced in P-ASCs co-cultured with HRECs; (d) HO-1 protein content was significantly higher in HG-P-ASCs/HRECs than P-ASCs/HRECs; and (e) VEGF-A levels in media from HG-co-cultures were reduced in P-ASCs/HRECs with respect to ASCs/HRECs. The data obtained highlighted the potential of autologous differentiated ASCs in future clinical applications based on cell therapy to counteract the damage induced by DR.

Funder

University of Catania

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3