A Study of the Internal Deformation Fields and the Related Microstructure Evolution during Thermal Fatigue Tests of a Single-Crystal Ni-Base Superalloy

Author:

Zong Cui1,Liu Sujie2,Ma Guangcai2,Guo Yi2,Huang Zhaohui1

Affiliation:

1. National Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China

2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

Ni-base superalloys operate in harsh service conditions where cyclic heating and cooling introduce deformation fields that need to be investigated in detail. We used the high-angular-resolution electron backscatter diffraction method to study the evolution of internal stress fields and dislocation density distributions in carbides, dendrites, and notch tips. The results indicate that the stress concentrations decay exponentially away from the notch, and this pattern of distribution was modified by the growth of cracks and the emission of dislocations from the crack tip. Crack initiation follows crystallographic traces and is weakly correlated with carbides and dendrites. Thermal cycles introduce local plasticity around carbides, the dendrite boundary, and cracks. The dislocations lead to higher local stored energy than the critical value that is often cited to induce recrystallization. No large-scale onset of recrystallization was detected, possibly due to the mild temperature (800 °C); however, numerous recrystallized grains were detected in carbides after 50 and 80 cycles. The results call for a detailed investigation of the microstructure-related, thermally assisted recrystallization phenomenon and may assist in the microstructure control and cooling channel design of turbine blades.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3