Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles

Author:

Gkiatas Georgios T.ORCID,Koutalakis Paschalis D.ORCID,Kasapidis Iordanis K.,Iakovoglou Valasia,Zaimes George N.

Abstract

The study attempts to monitor geomorphological changes (e.g., erosion/deposition) with innovative tools at a typical Mediterranean torrent. The torrent’s geomorphological conditions are studied for an entire affected stream reach. The investigation utilizes two different environments/point views: (a) traditional terrestrial and (b) innovative aerial. The traditional methods include erosion pins at streambanks and field cross-section measurements of the stream channel. For the innovative methods, utilizing an unmanned aerial vehicle, in order to monitor the geomorphologic changes in the entire reach during different days over the last 3 years (2020–2022), there was a total of six flights. The results from innovative methods showcase the episodic nature of stream channel changes since erosion and deposition were captured during the different monitoring periods. Even during one flight in one cross-section, the stream bed and two banks in many cases experienced different changes. The significant erosion and deposition recorded showcase the disequilibrium in the torrent. In addition, the impact of the anthropogenic structure (Irish bridge) is evident, since upstream, more substantial deposition was recorded compared to downstream. The similarity of the results between the innovative method and the traditional methods indicates the method’s effectiveness and the potential usefulness in using UAV images for stream bank and bed monitoring. One of the biggest advantages is the ability to monitor the entire reach at substantially lower costs and time compared to the traditional methods. Still, more testing needs to be conducted in different stream and river environments to better refine the method in order to be adopted by land and water managers to be used for stream and river monitoring.

Funder

Black Sea Programme Intereg EU

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3