Multiple Linear Regression Models with Limited Data for the Prediction of Reference Evapotranspiration of the Peloponnese, Greece

Author:

Dimitriadou Stavroula,Nikolakopoulos Konstantinos G.ORCID

Abstract

The aim of this study was to investigate the utility of multiple linear regression (MLR) for the estimation of reference evapotranspiration (ETo) of the Peloponnese, Greece, for two representative months of winter and summer during 2016–2019. Another objective was to test the number of inputs needed for satisfactorily accurate estimates via MLR. Datasets from sixty-two meteorological stations were exploited. The available independent variables were sunshine hours (N), mean temperature (Tmean), solar radiation (Rs), net radiation (Rn), wind speed (u2), vapour pressure deficit (es − ea), and altitude (Z). Sixteen MLR models were tested and compared to the corresponding ETo estimates computed by FAO-56 Penman–Monteith (FAO PM) in a previous study, via statistical indices of error and agreement. The MLR5 model with five input variables outperformed the other models (RMSE = 0.28 mm d−1, adj. R2 = 98.1%). Half of the tested models (two to six inputs) exhibited very satisfactory predictions. Models of one input (e.g., N, Rn) were also promising. However, the MLR with u2 as the sole input variable presented the worst performance, probably because its relationship with ETo cannot be linearly described. The results indicate that MLR has the potential to produce very good predictive models of ETo for the Peloponnese, based on the literature standards.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3