An Open-Source Cross-Section Tool for Hydrodynamic Model Geometric Input Development

Author:

Tom Bradley1,He Minxue1ORCID,Sandhu Prabhjot1

Affiliation:

1. California Department of Water Resources, 1516 9th Street, Sacramento, CA 95814, USA

Abstract

Hydrodynamic models are widely used in simulating water dynamics in riverine and estuarine systems. A reasonably realistic representation of the geometry (e.g., channel length, junctions, cross-sections, etc.) of the study area is imperative for any successful hydrodynamic modeling application. Typically, hydrodynamic models do not digest these data directly but rely on pre-processing tools to convert the data to a readable format. This study presents a parsimonious open-source and user-friendly Java software tool, the Cross-Section Development Program (CSDP), that is developed by the authors to prepare geometric inputs for hydrodynamic models. The CSDP allows the user to select bathymetry data collected in different years by different agencies and create cross-sections and computational points in a channel automatically. This study further illustrates the application of this tool to the Delta Simulation Model II, which is the operational forecasting and planning hydrodynamic and water quality model developed for the Sacramento–San Joaquin Delta in California, United States. Model simulations on water levels and flow rates at key stations are evaluated against corresponding observations. The simulations mimic the patterns of the corresponding observations very well. The square of the correlation coefficient is generally over 0.95 during the calibration period and over 0.80 during the validation period. The absolute bias is generally less than 5% and 10% during the calibration and validation periods, respectively. The Kling–Gupta efficiency index is generally over 0.70 during both calibration and validation periods. The results illustrate that CSDP can be efficiently applied to generate geometric inputs for hydrodynamic models.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3