Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands

Author:

Centeri CsabaORCID

Abstract

Seventy-seven percent of all agricultural land is related to livestock, meat and dairy, including grazing land and arable fields used for animal feed production. The effect of livestock on the natural environment is well documented. Many types of research describe these effects on biodiversity. The surface runoff and soil erosion on grasslands and pastures are investigated with smaller intensity since grasslands are one of the two major land uses that are considered as natural or at least semi-natural lands. Still, mainly due to overuse, grazing on sloping pasture lands can cause severe soil damage, the trampling can cause compaction, compaction decrease infiltration and thus increase runoff and, consequently, soil loss. There are several consequences of the grazing pressure that cause water erosion and surface runoff above the acceptable limit, such as a dramatic decrease in grass densities and/or above-ground bio-mass, compaction, animal tracks, etc. Related research started as early as 1911 and continues until today. There are several methods to analyse the consequences of grazing pressure, e.g., in situ rainfall simulations, infiltration and soil resilience measurements, modelling of runoff, soil loss and infiltration, calculation of ecological costs, etc. Furthermore, most importantly, scientists are investigating the possibilities for improvement of the achieved unstable grazing system due to bad management. Numerous publications have been publishing results on positive changes with the removal of grazing livestock from the grasslands. However, since the socio-economic situation is changing on Earth, more people requiring the products of the pastures, an optimal grazing solution is greatly needed. One of the solutions can be the planning of the optimal animal unit per area, based on the expected grass yields. However, due to the big differences in yields, caused by the greatly unreliable weather, the solution for the future must be a multifunctional agriculture and a flexible land use.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3