Structuralization of Complicated Lotic Habitats Using Sentinel-2 Imagery and Weighted Focal Statistic Convolution

Author:

Liu YangORCID,Kwan Mei-PoORCID

Abstract

Deriving the proper structure of lotic habitats, namely the structuralization of lotic habitats, is crucial to monitoring and modeling water quality on a large scale. How to structuralize complicated lotic habitats for practical use remains challenging. This study novelly integrates remote sensing, geographic information system (GIS), and computer vision techniques to structuralize complicated lotic habitats. A method based on Sentinel-2 imagery and weighted focal statistic convolution (WFSC) is developed to structuralize the complicated lotic habitats into discrete river links. First, aquatic habitat image objects are delineated from Sentinel-2 imagery using geographic object-based image analysis (GEOBIA). These lotic habitat image objects are then separated from lentic habitat image objects using a hydrologically derived river network as a reference. Second, the binary image of the lotic habitat image objects is converted to a fuzzy magnitude surface using WFSC. The ridgelines on the magnitude surface are traced as the centerlines of river links. Finally, the centerlines of river links are used to split the complicated lotic habitats into discrete river links. Essential planar geometric attributes are then numerically derived from each river link. The proposed method was successfully applied to the braided river network in the Mobile River Basin in the U.S. The results indicate that the proposed method can properly structuralize lotic habitats with high spatial accuracy and correct topological consistency. The proposed method can also derive essential attributes that are difficult to obtain from conventional methods on a large scale. With sufficient measurements, a striking width–abundance pattern has been observed in our study area, indicating a promising logarithmic law in lotic habitat abundance.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference64 articles.

1. Fisher, W.L., Bozek, M.A., Vokoun, J.C., and Jacobson, R.B. Freshwater aquatic habitat measurements. Fisheries Techniques, 2012.

2. Bain, M.B., and Stevenson, N.J. Aquatic Habitat Assessment, 1999.

3. Residence-time-based classification of surface water systems;Jones;Water Resour. Res.,2017

4. Modeling of erosion and deposition by turbidity currents generated at river mouths;Mulder;J. Sediment. Res.,1998

5. Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas?;Hizzett;Geophys. Res. Lett.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3