Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River

Author:

Letessier Clara1,Cardi Jean1,Dussel Antony1,Ebtehaj Isa2ORCID,Bonakdari Hossein3

Affiliation:

1. École Nationale du Génie de l’Eau et de l’Environnement de Strasbourg, 1 Cr des Cigarières, Rue de la Krutenau, 67000 Strasbourg, France

2. Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada

3. Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada

Abstract

Given that the primary cause of flooding in Ontario, Canada, is attributed to spring floods, it is crucial to incorporate temperature as an input variable in flood prediction models with machine learning algorithms. This inclusion enables a comprehensive understanding of the intricate dynamics involved, particularly the impact of heatwaves on snowmelt, allowing for more accurate flood prediction. This paper presents a novel machine learning approach called the Adaptive Structure of the Group Method of Data Handling (ASGMDH) for predicting daily river flow rates, incorporating measured discharge from the previous day as a historical record summarizing watershed characteristics, along with real-time data on air temperature and precipitation. To propose a comprehensive machine learning model, four different scenarios with various input combinations were examined. The simplest model with three parameters (maximum temperature, precipitation, historical daily river flow discharge) achieves high accuracy, with an R2 value of 0.985 during training and 0.992 during testing, demonstrating its reliability and potential for practical application. The developed ASGMDH model demonstrates high accuracy for the study area, with a significant number of samples having a relative error of less than 15%. The final ASGMDH-based model has only a second-order polynomial (AICc = 19,648.71), while it is seven for the classical GMDH-based model (AICc = 19,701.56). The sensitivity analysis reveals that maximum temperature significantly impacts the prediction of daily river flow discharge.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery

“Fond de Recherche du Québec-Nature et Technologies”, Québec Government

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3