Transport and Deposition of Microplastics at the Water–Sediment Interface: A Case Study of the White River near Muncie, Indiana

Author:

Adjornor Blessing Yaw1,Han Bangshuai1ORCID,Zahran Elsayed M.2ORCID,Pichtel John1ORCID,Wood Rebecca3ORCID

Affiliation:

1. Department of Environment, Geology, & Natural Resources, Ball State University, Muncie, IN 47304, USA

2. Department of Chemistry, Ball State University, Muncie, IN 47304, USA

3. Department of Psychology, Ball State University, Muncie, IN 47304, USA

Abstract

Microplastics, plastic particles smaller than 5 mm, pose a significant environmental threat due to their persistence and distribution in aquatic ecosystems. Research on the dynamics of microplastics within freshwater systems, particularly concerning their transport and deposition along river corridors, remains insufficient. This study investigated the occurrence and deposition of microplastics at the water–sediment interface of the White River near Muncie, Indiana. Sediment samples were collected from three sites: White River Woods (upstream), Westside Park (midstream), and Morrow’s Meadow (downstream). The microplastic concentrations varied significantly, with the highest concentration recorded upstream, indicating a strong influence from agricultural runoff. The types of microplastics identified were predominantly fragments (43.1%), fibers (29.6%), and films (27.3%), with fragments being consistently the most abundant at all sampling sites. A polymer analysis with selected particles using Fourier-transform infrared (FTIR) spectroscopy revealed that the most common polymers were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). The hydrodynamic conditions played a crucial role in the deposition and transport of microplastics. The statistical analysis demonstrated a strong positive correlation between the microplastic concentration and flow velocity at the downstream site, suggesting that lower flow velocities contribute to the accumulation of finer sediments and microplastics. Conversely, the upstream and midstream sites exhibited weaker correlations, indicating that other environmental and anthropogenic factors, such as land use and the sediment texture, may influence microplastic retention and transport. This study provides valuable insights into the complex interactions between river dynamics, sediment characteristics, and microplastic deposition in freshwater systems. These findings contribute to the growing body of knowledge on freshwater microplastic pollution and can help guide mitigation strategies aimed at reducing microplastic contamination in riverine ecosystems.

Funder

EPA P3

Ball State Aspire Graduate Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3