Estimation of Alpine Grassland Forage Nitrogen Coupled with Hyperspectral Characteristics during Different Growth Periods on the Tibetan Plateau

Author:

Gao JinlongORCID,Liang Tiangang,Yin Jianpeng,Ge Jing,Feng Qisheng,Wu Caixia,Hou Mengjing,Liu Jie,Xie HongjieORCID

Abstract

The applicability of hyperspectral remote sensing models for forage nitrogen (N) retrieval during different growth periods is limited. This study aims to develop a multivariate model feasible for estimating the forage N for the growth periods (June to November) in an alpine grassland ecosystem. The random forest (RF) algorithm is employed to determine the optimum combinations of 38 spectral variables capable of capturing dynamic variations in forage N. The results show that (1) throughout the growth period, the red-edge first shifts toward longer wavelengths and then shifts toward shorter wavelengths, the amplitude (AMP) and absorption depth (AD) gradually decrease, and the absorption position (AP) changes slightly; (2) the importance of spectral variables for forage N estimation differs during the different growth periods; (3) the multivariate model achieves better results for the first four periods (June to October) than for the last period (when the grass is completely senesced) (V-R2: 0.58–0.68 versus 0.23); and (4) for the whole growth period (June to November), the prediction accuracy of the general N estimation model validated by the unknown growth period is lower than that validated by the unknown location (V-R2 is 0.28 and 0.55 for the validation strategies of Leave-Time-Out and Leave-Location-Out, respectively). This study demonstrates that the changes in the spectral features of the red wavelength (red-edge position, AMP and AD) are well coupled with the forage N content. Moreover, the development of a multivariate RF model for estimating alpine grasslands N content during different growth periods is promising for the improvement of both the stability and accuracy of the model.

Funder

National Natural Science Foundation of China

Program for Changjiang Scholars and Innovative Research Team in University

National Key Research and Development Program of China

111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3