Abstract
The pharmacological effects of carbon to silicon bioisosteric replacements have been widely explored in drug design and medicinal chemistry. Here, we present a systematic investigation of the impact of different silyl groups on the anticancer activity of mucobromic acid (MBA) bearing furan-2(5H)-one core. We describe a comprehensive characterization of obtained compounds with respect to their anticancer potency and selectivity towards cancer cells. All four novel compounds exert stronger antiproliferative activity than MBA. Moreover, 3b induce apoptosis in colon cancer cell lines. A detailed investigation of the mechanism of action revealed that 3b activity stems from the down-regulation of survivin and the activation of caspase-3. Furthermore, compound 3b attenuates the clonogenic potential of HCT-116 cells. Interestingly, we also found that depending on the type of the silyl group, compound selectivity towards cancer cells could be precisely controlled. Collectively, we demonstrated the utility of silyl groups for adjusting both the potency and selectivity of silicon-containing compounds. These data reveal a link between the types of silyl group and compound potency, which could have bearings for the design of novel silicon-based anticancer drugs.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献