Research on Calculation Method of On-Orbit Instrumental Line Shape Function for the Greenhouse Gases Monitoring Instrument on the GaoFen-5B Satellite

Author:

Han Yunfei123ORCID,Shi Hailiang123ORCID,Luo Haiyan123,Li Zhiwei23,Ye Hanhan23,Li Chao123ORCID,Ding Yi123,Wu Shichao23,Wang Xianhua123,Xiong Wei123,Hou Chenhui4

Affiliation:

1. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China

2. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

3. Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China

4. China Siwei Surveying and Mapping Technology Co., Ltd., Beijing 100086, China

Abstract

The Greenhouse Gases Monitoring Instrument is based on the spectroscopic principle of spatial heterodyne spectroscopy technology and has the characteristics of no moving parts, a hyperspectral resolution, and a large luminous flux. The instrumental line shape function is one of the most important parameters characterizing the features of the instrument, and it plays a vital role in the system error analysis of the instrument’s measurements. To accurately obtain the instrumental line shape function of a spatial heterodyne spectrometer during the on-orbit period and improve the accuracy of gas concentration retrieval, this study develops a method to model and characterize the characteristics of the instrumental line shape function, including modulation loss and phase error. This study employs the solar calibration spectrum in the 1.568–1.583 μm bands to conduct iterative calculations of the instrumental line shape function error model. After the instrumental line function is updated, the average relative deviation is reduced from 1.83% to 0.756% between the theoretical and measured solar spectra. Additionally, the average relative deviation is reduced from 7.049% to 2.106% between the GMI nadir and theoretical nadir spectra. The findings demonstrate that updating the instrumental line shape function mitigates the impact of variations in the spectrometer’s instrumental line shape due to alterations in the orbital environment. This study offers a dependable reference for both the enhancement and oversight of a spectrometer’s instrumental line shape function, along with an investigation of shifts in instrument parameters.

Funder

next-generation carbon satellite data receiving, processing and cloud service technology

construction of satellite-ground link indicator system and carbon monitoring planning guidance technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3