Upscaling Forest Canopy Height Estimation Using Waveform-Calibrated GEDI Spaceborne LiDAR and Sentinel-2 Data

Author:

Wang Junjie1,Shen Xin1,Cao Lin1ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Forest canopy height is a fundamental parameter of forest structure, and plays a pivotal role in understanding forest biomass allocation, carbon stock, forest productivity, and biodiversity. Spaceborne LiDAR (Light Detection and Ranging) systems, such as GEDI (Global Ecosystem Dynamics Investigation), provide large-scale estimation of ground elevation, canopy height, and other forest parameters. However, these measurements may have uncertainties influenced by topographic factors. This study focuses on the calibration of GEDI L2A and L1B data using an airborne LiDAR point cloud, and the combination of Sentinel-2 multispectral imagery, 1D convolutional neural network (CNN), artificial neural network (ANN), and random forest (RF) for upscaling estimated forest height in the Guangxi Gaofeng Forest Farm. First, various environmental (i.e., slope, solar elevation, etc.) and acquisition parameters (i.e., beam type, Solar elevation, etc.) were used to select and optimize the L2A footprint. Second, pseudo-waveforms were simulated from the airborne LiDAR point cloud and were combined with a 1D CNN model to calibrate the L1B waveform data. Third, the forest height extracted from the calibrated L1B waveforms and selected L2A footprints were compared and assessed, utilizing the CHM derived from the airborne LiDAR point cloud. Finally, the forest height data with higher accuracy were combined with Sentinel-2 multispectral imagery for an upscaling estimation of forest height. The results indicate that through optimization using environmental and acquisition parameters, the ground elevation and forest canopy height extracted from the L2A footprint are generally consistent with airborne LiDAR data (ground elevation: R2 = 0.99, RMSE = 4.99 m; canopy height: R2 = 0.42, RMSE = 5.16 m). Through optimizing, ground elevation extraction error was reduced by 45.5% (RMSE), and the canopy height extraction error was reduced by 30.3% (RMSE). After training a 1D CNN model to calibrate the forest height, the forest height information extracted using L1B has a high accuracy (R2 = 0.84, RMSE = 3.13 m). Compared to the optimized L2A data, the RMSE was reduced by 2.03 m. Combining the more accurate L1B forest height data with Sentinel-2 multispectral imagery and using RF and ANN for the upscaled estimation of the forest height, the RF model has the highest accuracy (R2 = 0.64, RMSE = 4.59 m). The results show that the extrapolation and inversion of GEDI, combined with multispectral remote sensing data, serve as effective tools for obtaining forest height distribution on a large scale.

Funder

National Key Research and Development Program

Natural Science Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3