Estimation of Chlorophyll Content in Apple Leaves Infected with Mosaic Disease by Combining Spectral and Textural Information Using Hyperspectral Images

Author:

Song Zhenghua1,Liu Yanfu1ORCID,Yu Junru1ORCID,Guo Yiming1ORCID,Jiang Danyao1ORCID,Zhang Yu1ORCID,Guo Zheng2,Chang Qingrui13

Affiliation:

1. College of Nature Resources and Environment, Northwest A&F University, Yangling District, Xianyang 712100, China

2. College of Water and Soil Conservation Science and Engineering, Northwest A&F University, Yangling District, Xianyang 712100, China

3. Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, Yangling District, Xianyang 712100, China

Abstract

Leaf chlorophyll content (LCC) is an important indicator of plant nutritional status and can be a guide for plant disease diagnosis. In this study, we took apple leaves infected with mosaic disease as a research object and extracted two types of information on spectral and textural features from hyperspectral images, with a view to realizing non-destructive detection of LCC. First, the collected hyperspectral images were preprocessed and spectral reflectance was extracted in the region of interest. Subsequently, we used the successive projections algorithm (SPA) to select the optimal wavelengths (OWs) and extracted eight basic textural features using the gray-level co-occurrence matrix (GLCM). In addition, composite spectral and textural metrics, including vegetation indices (VIs), normalized difference texture indices (NDTIs), difference texture indices (DTIs), and ratio texture indices (RTIs) were calculated. Third, we applied the maximal information coefficient (MIC) algorithm to select significant VIs and basic textures, as well as the tandem method was used to fuse the spectral and textural features. Finally, we employ support vector regression (SVR), backpropagation neural network (BPNN), and K-nearest neighbors regression (KNNR) methods to explore the efficacy of single and combined feature models for estimating LCC. The results showed that the VIs model (R2 = 0.8532, RMSE = 2.1444, RPD = 2.6179) and the NDTIs model (R2 = 0.7927, RMSE = 2.7453, RPD = 2.2032) achieved the best results among the single feature models for spectra and texture, respectively. However, textural features generally exhibit inferior regression performance compared to spectral features and are unsuitable for standalone applications. Combining textural and spectral information can potentially improve the single feature models. Specifically, when combining NDTIs with VIs as input parameters, three machine learning models outperform the best single feature model. Ultimately, SVR achieves the highest performance among the LCC regression models (R2 = 0.8665, RMSE = 1.8871, RPD = 2.7454). This study reveals that combining textural and spectral information improves the quantitative detection of LCC in apple leaves infected with mosaic disease, leading to higher estimation accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3