Abstract
The European Medicines Agency (EMA) and the Current Good Manufacturing Practices (cGMP) in the United States of America, define excipient as the constituents of the pharmaceutical form other than the active ingredient, i.e., any component that is intended to furnish pharmacological activity. Although dendrimers do not have a pharmacopoeia monograph and, therefore, cannot be recognized as a pharmaceutical excipient, these nanostructures have received enormous attention from researchers. Due to their unique properties, like the nanoscale uniform size, a high degree of branching, polyvalency, aqueous solubility, internal cavities, and biocompatibility, dendrimers are ideal as active excipients, enhancing the solubility of poorly water-soluble drugs. The fact that the dendrimer’s properties are controllable during their synthesis render them promising agents for drug-delivery applications in several pharmaceutical formulations. Additionally, dendrimers can be used for reducing the drug toxicity and for the enhancement of the drug efficacy. This review aims to discuss the properties that turn dendrimers into pharmaceutical excipients and their potential applications in the pharmaceutical and biomedical fields.
Subject
General Materials Science
Reference140 articles.
1. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms
2. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy
3. Nanotechnology and picotechnology;Mostafavi,2019
4. Nanotechnology Toward Treating Cancer: A Comprehensive Review;Pillai,2019
5. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Biopharmaceutics Classification System-based Biowaivershttps://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M9/M9EWG_DraftGuideline_Step2_2018_0606.pdf
Cited by
224 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献