Towards the Extraction of Radioactive Cesium-137 from Water via Graphene/CNT and Nanostructured Prussian Blue Hybrid Nanocomposites: A Review

Author:

Rauwel Protima,Rauwel ErwanORCID

Abstract

Cesium is a radioactive fission product generated in nuclear power plants and is disposed of as liquid waste. The recent catastrophe at the Fukushima Daiichi nuclear plant in Japan has increased the 137Cs and 134Cs concentrations in air, soil and water to lethal levels. 137Cs has a half-life of 30.4 years, while the half-life of 134Cs is around two years, therefore the formers’ detrimental effects linger for a longer period. In addition, cesium is easily transported through water bodies making water contamination an urgent issue to address. Presently, efficient water remediation methods towards the extraction of 137Cs are being studied. Prussian blue (PB) and its analogs have shown very high efficiencies in the capture of 137Cs+ ions. In addition, combining them with magnetic nanoparticles such as Fe3O4 allows their recovery via magnetic extraction once exhausted. Graphene and carbon nanotubes (CNT) are the new generation carbon allotropes that possess high specific surface areas. Moreover, the possibility to functionalize them with organic or inorganic materials opens new avenues in water treatment. The combination of PB-CNT/Graphene has shown enhanced 137Cs+ extraction and their possible applications as membranes can be envisaged. This review will survey these nanocomposites, their efficiency in 137Cs+ extraction, their possible toxicity, and prospects in large-scale water remediation and succinctly survey other new developments in 137Cs+ extraction.

Funder

Sihtasutus Archimedes

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3