Reduced-Order Modeling of Steady and Unsteady Flows with Deep Neural Networks

Author:

Barraza Bryan1ORCID,Gross Andreas1

Affiliation:

1. Mechanical & Aerospace Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA

Abstract

Large-eddy and direct numerical simulations generate vast data sets that are challenging to interpret, even for simple geometries at low Reynolds numbers. This has increased the importance of automatic methods for extracting significant features to understand physical phenomena. Traditional techniques like the proper orthogonal decomposition (POD) have been widely used for this purpose. However, recent advancements in computational power have allowed for the development of data-driven modal reduction approaches. This paper discusses four applications of deep neural networks for aerodynamic applications, including a convolutional neural network autoencoder, to analyze unsteady flow fields around a circular cylinder at Re = 100 and a supersonic boundary layer with Tollmien–Schlichting waves. The autoencoder results are comparable to those obtained with POD and spectral POD. Additionally, it is demonstrated that the autoencoder can compress steady hypersonic boundary-layer profiles into a low-dimensional vector space that is spanned by the pressure gradient and wall-temperature ratio. This paper also proposes a convolutional neural network model to estimate velocity and temperature profiles across different hypersonic flow conditions.

Publisher

MDPI AG

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3