Structural Flexibility Effect on Spaceborne Solar Observation System’s Micro-Vibration Response

Author:

Yang Lin12ORCID,Wang Yansong12ORCID,Wei Lei12,Chen Yao12

Affiliation:

1. Institute of Frontiers and Interdisciplinary Sciences, Shandong University, Binhai Road 72, Qingdao 266237, China

2. Institute of Space Sciences, Shandong University, Wenhua West Road 180, Weihai 264209, China

Abstract

The spaceborne solar observation system is crucial for the study of space phenomena such as solar flares, which requires high tracking accuracy. This study presents a coupling model that integrates mechanical, electrical, and control models to investigate the structural flexibility effect on the micro-vibration response. We established a rigid–flexible model using mechanical parts. We considered the influence of flexible features while studying the dynamic responses in its operation. The state-space equations of the system showed that modal frequency, damping, and modal participation factors played significant roles. We derived transfer functions using the Laplace transform of the coupling models to better understand this mechanism, and Simulink models were thereby established. We simulated the acceleration responses of the rigid–flexible and rigid models under angle tracking modes, and the results showed significant differences. We also simulated the acceleration responses of the models under various control frequencies, and the optimal control frequency was thus obtained. Finally, we performed experiments, and the results indicated that the rigid–flexible model could better predict the motion and acceleration responses for the spaceborne solar observation system. This study provides valuable information for understanding the role of flexible features in space performance high-tracking accuracy instruments and for micro-vibration suppression research.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3