The Influence of Thrust Chamber Structure Parameters on Regenerative Cooling Effect with Hydrogen Peroxide as Coolant in Liquid Rocket Engines

Author:

Zhou ChuangORCID,Yu NanjiaORCID,Wang Shuwen,Han Shutao,Gong Haojie,Cai Guobiao,Wang Jue

Abstract

Liquid rocket engines with hydrogen peroxide and kerosene have the advantages of high density specific impulse, high reliability, and no ignition system. At present, the cooling problem of hydrogen peroxide engines, especially with regenerative cooling, has been little explored. In this study, a realizable k-epsilon turbulence model, discrete phase model, eddy dissipation concept model, and 10-step 10-component reaction mechanism of kerosene with oxygen are used. The increased rib height of the regenerative cooling channel causes the inner wall temperature of the engine increases, the average temperature of the coolant outlet decreases slightly, and the coolant pressure decreases. The overall wall temperature decreases as the rib width of the regenerative cooling channel increases. However, in the nozzle throat area, the wall temperature increases, the average coolant outlet temperature decreases, and the coolant pressure drop increases. A decrease in the inner wall thickness of the regenerative cooling channel results in a significant decrease in the wall temperature and a small increase in the average coolant outlet temperature. These findings contribute to the further development of the engine with hydrogen peroxide and can guide the design of its regenerative cooling process.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3