A Fuzzy Backstepping Attitude Control Based on an Extended State Observer for a Tilt-Rotor UAV

Author:

Shen SuiyuanORCID,Xu JinfaORCID,Xia QingyuanORCID

Abstract

In order to overcome the influence of internal and external disturbances caused by rotor tilt motion and gust disturbance on the full flight mode control of a tilt-rotor unmanned aerial vehicle (UAV), a design method using fuzzy backstepping control based on an extended-state observer (FBS-ESO) is proposed. In this paper, fuzzy control is used to tune the parameters of the backstepping control law online, and the extended-state observer estimates the total disturbance of the controlled system to improve the controller’s robustness and anti-disturbance capability. This paper designs the attitude control system of a tilt-rotor UAV based on an FBS-ESO controller. The control performance of the FBS-ESO controller is tested in a hardware-in-loop simulation of the attitude control system. The simulation results show that changing the rotor tilt angle will destroy the stability of the traditional backstepping controller and active disturbance rejection controller (ADRC). In contrast, the FBS-ESO controller maintains good control performance. In addition, the performance of the FBS-ESO controller is not be significantly affected by adding external gust disturbance or changing the UAV parameters in the simulation. These disturbances significantly impact the traditional backstepping controller and ADRC. Therefore, the FBS-ESO controller has better anti-disturbance capabilities and robustness, as well as higher attitude control accuracy.

Funder

National Key Laboratory of Rotorcraft Aeromechanics Fund Program of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3