Flight Load Calculation Using Neural Network Residual Kriging

Author:

Yan Qi1,Wan Zhiqiang1,Yang Chao1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Flight load calculation, an important step in aircraft design and optimization, typically involves millions of computations and requires significant computing resources and time. Improving the efficiency of flight load calculations while maintaining accuracy is therefore of great significance for shortening research and development cycles. This study investigated and compared multiple algorithms, including the neural network model, the Kriging surrogate model, and the neural network residual Kriging (NNRK) model, for flight load analysis. The accuracies of all models were confirmed through evaluation, with NNRK being the most efficient, making it highly suitable for flight load analysis. The flight load data of a civil aircraft, including the total weight, the center of gravity, the pitch moment of inertia, the altitude, the Mach number, the airspeed, the velocity pressure, the pitch rate, the load factor, and the angle of attack as input parameters, were used as sample data to establish models, for predicting wing loads under different flight conditions. The accuracies of all regressions were confirmed through evaluation, with NNRK being the most efficient. The flight load calculation shows that NNRK can significantly improve analysis efficiency and provide new insights into efficient and comprehensive flight load analysis.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3