Low-Energy Transfer Design of Heliocentric Formation Using Lunar Swingby on the Example of LISA

Author:

Yang JiaORCID,Zhang ZhongORCID,Jiang FanghuaORCID,Li Junfeng

Abstract

Space-based gravitational wave (GW) detection at low frequencies is of great scientific significance and has received extensive attention in recent years. This work designs and optimizes the low-energy transfer of the heliocentric formation of GW detectors, which starts from a geosynchronous transfer orbit and targets an Earth-like orbit. Based on the example of the Laser Interferometer Space Antenna (LISA), the transfer is first designed in two-body dynamical models and then refined in simplified high-fidelity dynamical models that only consider the major orbital perturbations evaluated here. The main contributions of this work are to present an adaptive model continuation technique and to exploit the lunar swingby technique to reduce the problem-solving difficulty and velocity increment of orbital transfer, respectively. The adaptive model continuation technique fully reveals the effect of perturbations and rapidly iterates the solutions to the simplified models. The simulation results show that the lunar swingby does reduce the energy needed to escape the Earth’s sphere of influence. It is found that the gravitation of the Earth–Moon system has a significant contribution to reducing the velocity increment. The solution of low-energy transfer in the simplified models is that the duration is 360.6615 days and the total velocity increment is 0.8468 km/s.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3