An Unmanned Aerial Vehicle Troubleshooting Mode Selection Method Based on SIF-SVM with Fault Phenomena Text Record

Author:

Yang Linchao,Jia Guozhu,Zheng Ke,Wei Fajie,Pan Xing,Chang Wenbing,Zhou ShenghanORCID

Abstract

At present, the research on fault analysis based on text data focuses on fault diagnosis and classification, but it rarely suggests how to use that information to troubleshoot faults reported in unmanned aerial vehicles (UAVs). Selecting the exact troubleshooting procedure to address faults reported by UAVs generally requires experienced technicians with professional equipment. To improve the efficiency of UAV troubleshooting, this paper proposed a troubleshooting mode selection method based on SIF-SVM (Serial information fusion and support vector machine) using the text feature data from fault description records. First, Word2Vec was used in text data feature extraction. Second, in order to increase the amount of information in the modeling data, we used the information fusion method. SVM was then used to construct the classification model for troubleshooting mode selection. Finally, the effectiveness of the proposed model was verified by using the fault record data of a new fixed-wing UAV.

Funder

National Natural Science Foundation of China

Technical Research Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3