Comparison of Visual and Visual–Tactile Inspection of Aircraft Engine Blades

Author:

Aust JonasORCID,Mitrovic AntonijaORCID,Pons DirkORCID

Abstract

Background—In aircraft engine maintenance, the majority of parts, including engine blades, are inspected visually for any damage to ensure a safe operation. While this process is called visual inspection, there are other human senses encompassed in this process such as tactile perception. Thus, there is a need to better understand the effect of the tactile component on visual inspection performance and whether this effect is consistent for different defect types and expertise groups. Method—This study comprised three experiments, each designed to test different levels of visual and tactile abilities. In each experiment, six industry practitioners of three expertise groups inspected the same sample of N = 26 blades. A two-week interval was allowed between the experiments. Inspection performance was measured in terms of inspection accuracy, inspection time, and defect classification accuracy. Results—The results showed that unrestrained vision and the addition of tactile perception led to higher inspection accuracies of 76.9% and 84.0%, respectively, compared to screen-based inspection with 70.5% accuracy. An improvement was also noted in classification accuracy, as 39.1%, 67.5%, and 79.4% of defects were correctly classified in screen-based, full vision and visual–tactile inspection, respectively. The shortest inspection time was measured for screen-based inspection (18.134 s) followed by visual–tactile (22.140 s) and full vision (25.064 s). Dents benefited the most from the tactile sense, while the false positive rate remained unchanged across all experiments. Nicks and dents were the most difficult to detect and classify and were often confused by operators. Conclusions—Visual inspection in combination with tactile perception led to better performance in inspecting engine blades than visual inspection alone. This has implications for industrial training programmes for fault detection.

Funder

Christchurch Engine Centre

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3