Comparative Analysis of Real-Time Fault Detection Methods Based on Certain Artificial Intelligent Algorithms for a Hydrogen–Oxygen Rocket Engine

Author:

Huang Peihao,Wang TaoORCID,Ding LinORCID,Yu HuhuangORCID,Tang Yong,Zhou Dianle

Abstract

The real-time fault detection and diagnosis algorithm of a liquid rocket engine is the basis of online reconfiguration of guidance and the control system of a launch vehicle, which is directly related to the success or failure of space mission. Based on previous related works, this paper carries out comparative experimental studies of relevant intelligent algorithm models for real-time fault detection engineering application requirements of a liquid hydrogen–oxygen rocket engine. Firstly, the working state and detection parameters’ selection of a hydrogen–oxygen engine are analyzed, and the proposed three real-time intelligent fault detection algorithm model design methods are elaborated again. Fault detection calculation and analysis are carried out through normal test data and fault test data. The comparative analysis results of real-time intelligent fault detection algorithm models is presented from three dimensions: detection time, fault detection, and stability and consistency. Finally, based on a correlation analysis, a comprehensive intelligent fault diagnosis model design framework is given to further solve the requirements of real-time fault detection and diagnosis engineering development of a liquid rocket engine, a complex piece of equipment.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference31 articles.

1. Health Monitoring of Liquid Rocket Engine;Wu,2021

2. Fault Diagnosis of Liquid Rocket Engine based on Neural Network;Huang,2015

3. A review of flaws and damage in space launch vehicles: Motors and engines

4. The Intelligent Flight Roadmap of Long March Launch Vehicle;Zhang;Missiles Space Veh.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3