LEO Satellite Navigation Based on Optical Measurements of a Cooperative Constellation

Author:

Chen Pei1ORCID,Mao Xuejian1,Chen Siyu1

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

Abstract

Autonomous, anti-jamming, and high-precision satellite navigation are of great importance to current and future space technologies. This paper proposes a cooperative constellation navigation system for low Earth orbit (LEO) satellites that use only the optical measurements of cooperative satellites. Based on photometry, an optical transmission link model of the system is built. With the pixel coordinates of the cooperative satellites on the optical images, the line of sight (LoS) vectors of the cooperative satellites with respect to the LEO spacecraft are first calculated, and a single-point positioning method based on the LoS vectors’ inner products is proposed. The single-point positioning results are then fed into a least square batch filter to estimate a high-precision spacecraft orbit. Simulations are conducted to evaluate the potential navigation accuracy. With a cooperative satellite ephemeris error of 100 m and an optical measurement noise level of 5 arcsecs, position accuracies of single-point positioning and dynamic orbit determination in the order of hundreds of meters and eight meters, respectively, are realized. In addition, the influences of the orbital altitude of the cooperative constellation, the ephemeris error of the cooperative satellite, the noise level of the optical measurements, and the Earth’s gravitational model on navigation accuracy are investigated via comparative simulations.

Funder

Shanghai Aerospace Science and Technology Innovation Fund Projects

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3