Two-Stage Hyperelliptic Kalman Filter-Based Hybrid Fault Observer for Aeroengine Actuator under Multi-Source Uncertainty

Author:

Wang Yang1,Sun Rui-Qian2,Gou Lin-Feng1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China

2. AVIC Xi’an Aeronautics Computing Technique Research Institute, Xi’an 710065, China

Abstract

An aeroengine faces multi-source uncertainty consisting of aeroengine epistemic uncertainty and the control system stochastic uncertainty during operation. This paper investigates actuator fault estimation under multi-source uncertainty to enhance the fault diagnosis capability of aero-engine control systems in complex environments. With the polynomial chaos expansion-based discrete stochastic model quantification, the optimal filter under multi-source uncertainty, the Hyperelliptic Kalman Filter, is proposed. Meanwhile, by treating actuator fault as unknown input, the Two-stage Hyperelliptic Kalman Filter (TSHeKF) is also proposed to achieve optimal fault estimation under multi-source uncertainty. However, considering that the biases of the model are often fixed for the individual, the TSHeKF-based fault estimation is robust and leads to inevitable conservativeness. By adding the additional estimation of the unknown deviation in state function caused by probabilistic system parameters, the hybrid fault observer (HFO) is proposed based on the TSHeKF and realizes conservativeness-reduced estimation for actuator fault under multi-source uncertainty. Numerical simulations show the effectiveness and optimality of the proposed HFO in state estimation, output prediction, and fault estimation for both single and multi-fault modes, when considering multi-source uncertainty. Furthermore, Monte Carlo experiments have demonstrated that the HFO-based optimal fault estimation is less conservative and more accurate than the Two-stage Kalman Filter and TSHeKF, providing better safety and more reliable aeroengine operation assurance.

Funder

National Major Science and Technology Project

Science Center for Gas Turbine Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3