Study on Flow and Heat Transfer Performance of a Rectangular Channel Filled with X-Shaped Truss Array under Operating Conditions of Gas Turbine Blades

Author:

Xi LeiORCID,Gao Jianmin,Xu Liang,Zhao Zhen,Yang Tao,Li Yunlong

Abstract

In this investigation, the heat transfer and flow capabilities of an X-shaped truss array cooling channel under various operating conditions of gas turbine blades were thoroughly studied. The influence laws of the inlet Reynolds number, inlet turbulence intensity, wall heat flux and cooling medium (air, steam) on the heat transfer and flow performance of the X-shaped truss array channel were analyzed and summarized. The empirical correlations of friction coefficients and average Nusselt numbers with maximum deviations less than ± 14% were fitted. The results show that the inlet Reynolds number has the most significant effect on the flow and heat transfer performance of the X-shaped truss array channel. When the inlet Reynolds number increases from 20,000 to 200,000, the average Nusselt number of the X-shaped truss array channel is increased by 3.92 times, the friction coefficient is decreased by 12.88%, and the comprehensive thermal coefficient is decreased by 31.19%. Compared with the medium turbulence intensity of Tu = 5%, the average Nusselt number, friction coefficient and comprehensive thermal coefficient of the X-shaped truss array channel at Tu = 20% are increased by 3.70%, 2.51% and 2.79%, respectively. With the increase in the wall heat flux, the friction coefficient of the X-shaped truss array channel roughly shows a trend of first decreasing and then increasing, while the average Nusselt number and the comprehensive thermal coefficient show a trend of first rapidly increasing and then slightly decreasing or remaining unchanged. Compared with air cooling, the average Nusselt numbers of the X-shaped truss array channel of steam cooling are increased by 6.30% to 9.54%, and the corresponding friction coefficients and comprehensive thermal coefficients are decreased by 0.11% to 0.55% and 2.63% to 5.59%, respectively.

Funder

the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3