Impulse and Performance Measurements of Electric Solid Propellant in a Laboratory Electrothermal Ablation-Fed Pulsed Plasma Thruster

Author:

Glascock Matthew S.ORCID,Rovey Joshua L.,Polzin Kurt A.ORCID

Abstract

Electric solid propellants are advanced solid chemical rocket propellants that can be controlled (ignited, throttled and extinguished) through the application and removal of an electric current. This behavior may enable the propellant to be used in multimode propulsion systems utilizing the ablative pulsed plasma thruster. The performance of an electric solid propellant operating in an electrothermal ablation-fed pulsed plasma thruster was investigated using an inverted pendulum micro-newton thrust stand. The impulse bit and specific impulse of the device using the electric solid propellant were measured for short-duration test runs of 100 pulses and longer-duration runs to end-of-life, at energy levels of 5, 10, 15 and 20 J. Also, the device was operated using the current state-of-the-art ablation-fed pulsed plasma thruster propellant, polytetrafluoroethylene (PTFE). Impulse bit measurements for PTFE indicate 100 ± 20 µN-s at an initial energy level of 5 J, which increases linearly with energy by approximately 30 µN-s/J. Within the error of the experiment, measurements of the impulse bit for the electric solid propellant are identical to PTFE. Specific impulse when operating on PTFE is calculated to be about 450 s. It is demonstrated that a surface layer in the hygroscopic electric solid propellant is rapidly ablated over the first few discharges of the device, which decreases the average specific impulse relative to the traditional polytetrafluoroethylene propellant. Correcting these data by subtracting the early discharge ablation mass loss measurements yields a corrected electric solid propellant specific impulse of approximately 300 s.

Funder

Glenn Research Center

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3