Affiliation:
1. China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract
To research serious nonlinear coupling problems among aerodynamics, flight mechanics, and flight control during high maneuvers, a virtual flight testing platform has been developed for a large-scale, high-speed wind tunnel, based on the real physical environment, and it can significantly mitigate risks and reduce the costs of subsequent flight tests. The platform of virtual flight testing is composed of three-degrees-of-freedom model support, measuring devices for aerodynamic and motion parameters, a virtual flight control system, and a test model. It provides the ability to realistically simulate real maneuvers, investigate the coupling characteristics of unsteady aerodynamics and nonlinear flight dynamics, evaluate flight performance, and verify the flight control law. The typical test results of a pitch maneuver with open-loop and closed-loop control are presented, including a one-degree-of-freedom pitch motion and a two-degrees-of-freedom pitch and roll motion. The serious pitch and roll-coupled motion during a pitch maneuver at a high angle of attack is revealed, and the flight control law for decoupled control is successfully verified. The comparison of the test results and the flight data of a real pitch maneuver proves the reliability and capability of virtual flight testing.
Reference30 articles.
1. Conceptual fluid/motion coupling in the Herbst supermaneuver;Ericsson;J. Aircr.,1997
2. Agile missile dynamics and control;Wise;J. Guid. Control Dyn.,1998
3. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers;Nelson;Prog. Aerosp. Sci.,2003
4. Effective design of highly maneuverable tailless aircraft;Colgren;J. Aircr.,2008
5. Douglas, I.G. (2004, January 16–19). A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft. Proceedings of the Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, USA. AIAA-2004-5276.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献