The Bond Graph Modeling and Experimental Verification of a Hydraulic Inertial Vibration Isolator Including Nonlinear Effects

Author:

Liu Niuniu1ORCID,Li Cheng1,Zhang Liwei1ORCID,Lei Zhiyang2,Yang Jing3,Lai Fuqiang1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

2. National Key Laboratory on Ship Vibration & Noise, China Ship Development and Design Center, Wuhan 430064, China

3. Longhe Intelligent Equipment Manufacturing Co., Ltd., Longyan 364101, China

Abstract

Passive vibration isolation techniques with low-frequency characteristics have been a hot topic in the aerospace field. A hydraulic inertial vibration isolator is a highly effective type of isolator for controlling low-frequency vibrations. It typically consists of a main spring, a minor spring, an inertial mass, and a fluid domain. Due to its multi-domain nature, analyzing the isolation mechanism of this type of isolator is challenging. The bond graph method is employed to establish the dynamic model of the isolator. Subsequently, the state equations of the isolator are derived, and the energy equations of both the mechanical and the fluid parts of the isolator are obtained. Based on this, the energy transfer characteristics between the mechanical and fluid domains inside the isolator under external excitation are discussed. The time-domain response of the forces transmitted to the foundation is analyzed. It is shown that the anti-resonance frequency occurs when the forces transmitted to the foundation generated by the main spring and the fluid pressure are equal to that of the minor spring. To verify the proposed method’s correctness, a prototype of the isolator is designed and a carefully designed experiment is conducted. The acceleration transmissibility of the isolator is used to conduct a comparative study. The results show that the theoretical results are in good agreement with the experimental results. To depict the dynamic characteristics of the isolator under large amplitude vibration, the nonlinear dynamic model of the isolator is developed, and the corresponding force transmissibility of the isolator is formulated. The energy flow between the mechanical and the fluid domains under this condition is also analyzed. The results indicate that the energy flow responses exhibit a similar change tendency to the force transmissibility. However, the peak of the energy ratio between the mechanical subsystem and the fluid is the same as the linear condition, suggesting that this value is determined by the amplification ratio of the isolator. This research provides enhanced physical insight to understand the dynamic characteristics of this type of isolator and will help to shorten the design cycle of the isolator.

Funder

National Natural Science Foundation of China

State Key discipline laboratory of noise and vibration control of ship equipment in Shanghai Jiaotong University

Fujian Provincial Natural Science Foundation

Starting Grants of Fuzhou University

National Key Laboratory on Ship Vibration and Noise

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3