Identification of Key Risk Hotspots in Mega-Airport Surface Based on Monte Carlo Simulation

Author:

Tian Wen12,Zhou Xuefang12,Yin Jianan12ORCID,Li Yuchen12ORCID,Zhang Yining12

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. State Key Laboratory of Air Traffic Management System, Nanjing 211106, China

Abstract

The complex layout of the airport surface, coupled with interrelated vehicle behaviors and densely mixed traffic flows, frequently leads to operational conflict risks. To address this issue, research was conducted on the recognition of characteristics and risk assessment for airport surface operations in mixed traffic flows. Firstly, a surface topological network model was established based on the analysis of the physical structure features of the airport surface. Based on the Monte Carlo simulation method, the simulation framework for airport surface traffic operations was proposed, enabling the simulation of mixed traffic flows involving aircraft and vehicles. Secondly, from various perspectives, including topological structural characteristics, network vulnerabilities, and traffic complexity, a comprehensive system for feature indices and their measurement methods was developed to identify risk hotspots in mixed traffic flows on the airport surface, which facilitated the extraction of comprehensive risk elements for any node’s operation. Finally, a weighting rule for risk hotspot feature indices based on the CRITIC–entropy method was designed, and a risk assessment method for surface operations based on TOPSIS–gray relational analysis was proposed. This method accurately measured risk indices for airport surface operations hotspots. Simulations conducted at Shenzhen Bao’an International Airport demonstrate that the proposed methods achieve high simulation accuracy. The identified surface risk hotspots closely matched actual conflict areas, resulting in a 20% improvement in the accuracy of direct risk hotspot identification compared to simulation experiments. Additionally, 10.9% of nodes in the airport surface network were identified as risk hotspots, including 3 nodes with potential conflicts between aircraft and ground vehicles and 21 nodes with potential conflicts between aircraft. The proposed methods can effectively provide guidance for identifying potential “aircraft–vehicle” conflicts in complex airport surface layouts and scientifically support informed decisions in airport surface operation safety management.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

School Innovation Plan Project of Nanjing University of Aeronautics and Astronautics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3