Global Optimization of UAV Area Coverage Path Planning Based on Good Point Set and Genetic Algorithm

Author:

Yuan JinbiaoORCID,Liu Zhenbao,Lian Yeda,Chen Lulu,An Qiang,Wang Lina,Ma Bodi

Abstract

When performing area coverage tasks in some special scenarios, fixed-wing aircraft conventionally adopt the scan-type of path planning, where the distance between two adjacent tracks is usually less than the minimum turning radius of the aircraft. This results in increased energy consumption during turning between adjacent tracks, which means a reduced task execution efficiency. To address this problem, the current paper proposes an area coverage path planning method for a fixed-wing unmanned aerial vehicle (UAV) based on an improved genetic algorithm. The algorithm improves the primary population generation of the traditional genetic algorithm, with the help of better crossover operator and mutation operator for the genetic operation. More specifically, the good point set algorithm (GPSA) is first used to generate a primary population that has a more uniform distribution than that of the random algorithm. Then, the heuristic crossover operator and the random interval inverse mutation operator are employed to reduce the risk of local optimization. The proposed algorithm is verified in tasks with different numbers of paths. A comparison with the conventional genetic algorithm (GA) shows that our algorithm can converge to a better solution.

Funder

National Natural Science Foundation Fund

Shenzhen Fundamental Research Program

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference36 articles.

1. Optimal UAV Route Planning for Coverage Search of Stationary Target in River

2. Sensor-Driven Area Coverage for an Autonomous Fixed-Wing Unmanned Aerial Vehicle

3. UAV Path Planning for Structure Inspection in Windy Environments

4. Optimal video communication strategy for intelligent video analysis in unmanned aerial vehicle applications;Yongqiang;Chin. J. Aeronaut.,2020

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3