Experimental and Numerical Flutter Analysis Using Local Piston Theory with Viscous Correction

Author:

Liu Chenyu1,Xie Changchuan1,Meng Yang1ORCID,Bai Liuyue1ORCID

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Due to the maneuver and overload requirements of aircraft, it is inevitable that supersonic fins experience high angles of attack (AOAs) and viscous effects at high altitudes. The local piston theory with viscous correction (VLPT) is introduced and modified to account for the 3-dimensional effect. With the contribution of the explicit aerodynamic force expression and enhanced surface spline interpolation, a tightly coupled state-space equation of the aeroelastic system is derived, and a flutter analysis scheme of relatively small computational complexity and high precision is established with a mode tracking algorithm. A wind tunnel test conducted on a supersonic fin confirms the validity of our approach. Notably, the VLPT predicts a more accurate flutter boundary than the local piston theory (LPT), particularly regarding the decreasing trend in flutter speed as AOA increases. This is attributed to the VLPT’s ability to provide a richer and more detailed steady flow field. Specifically, as the AOA increases, the spanwise flow evolves into a gradually pronounced spanwise vortex, yielding an additional downwash and energizing the boundary layer, which is not captured by LPT. This indicates that the precision of LPT/VLPT significantly depends on the accuracy of steady flow results.

Funder

The 1912 project

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3