Abstract
Forests play crucial roles in regulating the amount and timing of streamflow through the water storage function. Bryophytes contribute to this increase in water storage owing to their high water-holding capacity; however, they might be severely damaged by climate warming. This study examined the water storage capacity (WSC) of bryophytes in forests in the mountainous areas of Japan. Sampling plots (100 m2) were established along two mountainous trails at 200-m altitude intervals. Bryophytes were sampled in these plots using 100-cm2 quadrats, and their WSC was evaluated according to the maximum amount of water retained in them (WSC-quadrat). The total amount of water in bryophytes within each plot (WSC-plot) was then calculated. The WSC-quadrat was affected by the forms of bryophyte communities (life forms) and their interactions, further influencing soil moisture. The WSC-quadrat did not show any significant trend with altitude, whereas, the highest WSC-plot values were obtained in subalpine forests. These changes to WSC-plot were explained by large differences in bryophyte cover with altitude. As the WSC controlled by the life forms might be vulnerable to climate warming, it can provide an early indicator of how bryophyte WCS and associated biological activities are influenced.
Funder
Japan Society for the Promotion of Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献