Test Bench for Right Ventricular Failure Reversibility: The Hybrid BiVAD Concept

Author:

Tarzia Vincenzo1,Ponzoni Matteo1ORCID,Pittarello Demetrio2ORCID,Gerosa Gino1ORCID

Affiliation:

1. Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy

2. Institute of Anesthesia and Intensive Care, Padua University Hospital, 35128 Padua, Italy

Abstract

Background: When heart transplantation and myocardial recovery are unlikely, patients presenting with biventricular cardiogenic shock initially treated with extracorporeal membrane oxygenation (ECMO) may benefit from a mechanical support upgrade. In this scenario, a micro-invasive approach is proposed: the combination of the double-lumen ProtekDuo cannula (Livanova, London, UK) and the Impella 5.5 (Abiomed, Danvers, MA) trans-aortic pump that translates into a hybrid BiVAD. Methods: All consecutive ECMO patients presenting with biventricular cardiogenic shock and ineligibility to heart transplantation from August 2022 were prospectively enrolled. The clinical course, procedural details, and in-hospital events were collected via electronic medical records. Results: A total of three patients, who were temporarily not eligible for heart transplantation or durable LVAD due to severe acute pneumonia and right ventricular (RV) dysfunction, were implanted with a hybrid BiVAD. This strategy provided high-flow biventricular support while pulmonary function ameliorated. Moreover, by differentially sustaining the systemic and pulmonary circulation, it allowed for a more adequate reassessment of RV function. All the patients were considered eligible for isolated durable LVAD and underwent less invasive LVAD implantation paired with a planned postoperative RVAD. In all cases, RV function gradually recovered and the RVAD was successfully removed. Conclusions: The Hybrid BiVAD represents an up-to-date micro-invasive mechanical treatment of acute biventricular failure beyond ECMO. Its rationale relies on more physiological circulation across the lungs, the complete biventricular unloading, and the possibility of including an oxygenator in the circuit. Finally, the independent and differential control of pulmonary and systemic flows allows for more accurate RV function evaluation for isolated durable LVAD eligibility reassessment.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3