Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor

Author:

Cardona Huerta RafaelORCID,Moreu FernandoORCID,Lozano Galant Jose AntonioORCID

Abstract

Infrastructures such as aerial tramways carry unique traffic operations and have specific maintenance requirements that demand constant attention. It is common that old structures lack any type of automatization or monitoring systems, relying only on human judgment. Owners are interested in implementing techniques that assist them in making maintenance decisions, but are reluctant to invest in expensive and complex technology. In this study, researchers discussed with the owners different options and proposed a sustainable and cost-efficient solution to monitor the Sandia Peak Tramway operations with just two strategically located acceleration sensors. To maximize the success options researchers worked with the owners and developed a sensor that satisfied their needs. A Low-cost Efficient Wireless Intelligent Sensor 4—Outdoors (LEWIS 4) was developed, tested and validated during the experiment. Two solar-powered units were installed by the tramway staff and recorded data for three days. When retrieved, researchers analyzed the data recorded and concluded that with only two sensors, the acceleration data collected were sufficient to determine the position and location of the tramway cars. It was also found that the sensor on the tower provides data about the cable–tower interaction and the forces caused by the friction on the system, this being a critical maintenance factor. This work summarizes a methodology for infrastructure owners consisting of guidelines to design a sustainable and affordable monitoring approach that is based on the design, development and installation of low-cost sensors.

Funder

European Regional Development Fund

Federal Highway Administration

New Mexico Consortium

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3