Abstract
Infrastructures such as aerial tramways carry unique traffic operations and have specific maintenance requirements that demand constant attention. It is common that old structures lack any type of automatization or monitoring systems, relying only on human judgment. Owners are interested in implementing techniques that assist them in making maintenance decisions, but are reluctant to invest in expensive and complex technology. In this study, researchers discussed with the owners different options and proposed a sustainable and cost-efficient solution to monitor the Sandia Peak Tramway operations with just two strategically located acceleration sensors. To maximize the success options researchers worked with the owners and developed a sensor that satisfied their needs. A Low-cost Efficient Wireless Intelligent Sensor 4—Outdoors (LEWIS 4) was developed, tested and validated during the experiment. Two solar-powered units were installed by the tramway staff and recorded data for three days. When retrieved, researchers analyzed the data recorded and concluded that with only two sensors, the acceleration data collected were sufficient to determine the position and location of the tramway cars. It was also found that the sensor on the tower provides data about the cable–tower interaction and the forces caused by the friction on the system, this being a critical maintenance factor. This work summarizes a methodology for infrastructure owners consisting of guidelines to design a sustainable and affordable monitoring approach that is based on the design, development and installation of low-cost sensors.
Funder
European Regional Development Fund
Federal Highway Administration
New Mexico Consortium
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献