Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly (Hermetia illucens L.)

Author:

Boakye-Yiadom Kofi ArmahORCID,Ilari AlessioORCID,Duca DanieleORCID

Abstract

The black soldier fly (BSF) is recognised as a valuable insect for mitigating feed and organic waste management challenges. Thus, concerted efforts are being directed toward the promotion of the BSF. Despite the numerous advantages of BSF larvae, there are several critical environmental aspects, particularly its global warming potential, that need to be considered before large-scale adoption due to the complexity of the insect’s value chain. The direct assessment of greenhouse gas (GHG) and ammonia emissions from BSF larvae biotreatment is crucial for conducting a life cycle assessment (LCA) to evaluate the insect products’ environmental performance. This article reviews the emissions of GHG from BSF larvae bioconversion activities based on different gas sensing techniques while highlighting the factors that influence these emissions. Generally, low gas emissions were reported. However, the influence of various factors influencing emissions remains unclear, especially for nitrous oxide. We also analysed LCA studies on BSFL products while emphasising the uncertainties and variabilities among the studies. The wide variation of impact scores reported in the studies suggests that standardised guidelines should be developed to streamline methodical approaches for impact assessments pertaining to system boundaries, functional units, allocation, and system expansion assumptions. We identified several aspects for future improvements to harmonise studies in order to enhance the comparative assessment of the BSFL products.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference174 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3